Гемоглобин и его соединения
Гемоглобин (Нв) – основной компонент эритроцитов, благодаря которому эритроциты выполняют дыхательную функцию и поддерживают рН крови. По химической природе он относится к хромопротеидам. У мужчин в крови содержится в среднем 130-160 г/л гемоглобина, у женщин – 120-150 г/л. Молекулярная масса гемоглобина составляет около 60000 Да. Гемоглобин состоит из белка глобина и 4 молекул гема. Гем имеет в своем составе атом железа, способный присоединять или отдавать молекулу кислорода.
Гем содержит двухвалентное железо, которое играет ключевую роль в деятельности гемоглобина, являясь его активной (простетической) группой. Гемоглобин синтезируется эритро- и нормобластами костного мозга. Для нормального синтеза гемоглобина необходимо достаточное поступление железа с пищей. При разрушении эритроцитов гемоглобин, после отщепления гема, превращается в билирубин — желчный пигмент, который поступает, в основном, в кишечник в составе желчи, где превращается в стеркобилин, выводящийся из организма с каловыми массами. Часть билирубина удаляется с мочой в виде уробилина.
Основная функция гемоглобина — перенос кислорода и углекислого газа. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин. Соединение гемоглобина с кислородом происходит в капиллярах легких. Это соединение непрочное. В виде оксигемоглобина переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом носит название карбгемоглобина. Соединение гемоглобина с углекислым газом происходит в капиллярах тканей организма. Это соединение легко распадается. В виде этого соединения переносится 20 % СО2. Оксигемоглобин и карбгемоглобин являются физиологическими соединениями гемоглобина.
В скелетных и сердечной мышцах находится мышечный гемоглобин, называемый миоглобином. Он играет важную роль в снабжении кислородом работающих мышц, его можно рассматривать, как депо О2 в мышцах.
Имеется несколько форм гемоглобина, отличающихся строением белковой части – глобина. Первые 7-12 нед. внутриутробного развития зародыша его красные кровяные тельца содержат примитивный гемоглобин. У плода содержится гемоглобин F (80 %) или фетальный гемоглобин (от англ. Faetus – плод) гемоглобин. Он обладает более высокой способностью связывать кислород. Это помогает плоду не испытывать гипоксии при относительно низком парциальном напряжении кислорода в его крови. После рождения гемоглобин F практически полностью заменяется на взрослый – гемоглобин А (от англ. adult – взрослый). В эритроцитах взрослого человека содержатся гемоглобин А (95-98 % Hb A1 и 2-3 % HbA2 ).
Гемоглобин может вступать в соединение и с другими газами. Соединение гемоглобина с угарным газом (СО) называется карбоксигемоглобином — это патологическое соединение, в норме его не существует, т.к. в атмосфере отсутствует СО. Является прочным соединением. Гемоглобин блокирован в нем угарным газом и не способен осуществлять перенос кислорода. Сродство гемоглобина к угарному газу выше его сродства к кислороду, поэтому даже небольшое количество угарного газа в воздухе является опасным для жизни. При этом более критическим является не концентрация угарного газа, а длительность его вдыхания. Даже предельно низкое содержание СО в воздухе, но при длительном вдыхании, например, во время сна может оказаться летальным. Вследствие своего высокого сродства угарный газ в виде карбоксигемоглобина способен циркулировать в крови предельно долго.
Часто отравления угарным газом возникают у водителей при длительном нахождении в закрытом гараже с включенным двигателем автомобиля. Другим распространенным клинически значимым источником СО являются древесный дым, а также сырой кирпич печей изб и свежий печной лак. Поэтому при первом или после длительного перерыва протапливании таких печей необходимо тщательное проветривание помещения.
Особенностью угарного газа является то, что он не обладает запахом, поэтому отравление развивается незаметно. Часто пострадавший осознает это, когда проявляется миорелаксирующее (расслабление скелетной мускулатуры) действие угарного газа, при этом человек не может самостоятельно покинуть помещение.
Первая помощь при отравлении угарным газом. Пострадавшего следует переместить на свежий воздух. Следует учитывать, что при значительном отравлении сохранность самостоятельного дыхания не снимает необходимости проведения дальнейших действий по оказанию помощи. Наиболее оптимальным будет подача воздуха с повышенным содержание О2, например, из кислородной подушки. При отсутствии таковой – произвести искусственное дыхание. Во время искусственного дыхания в легкие потерпевшего воздух нагнетается под давлением, большим атмосферного.
При этом парциальное давление О2 в таком воздухе оказывается большим, чем в норме, что способствует его большему растворению в крови, а также лучшему вытеснению угарного газа из связи с гемоглобином. Если же пострадавший будет дышать самостоятельно, парциальное давление О2 во вдыхаемом воздухе окажется меньшим (примерно, 100 мм рт.ст.), что окажется недостаточным для вытеснения из карбоксигемоглобина угарного газа, т. к. сродство Нb к СО значительно выше, чем О2. В дальнейшем пострадавший должен быть доставлен в больницу.
При воздействии на гемоглобин экзогенных сильных окислителей происходит окисление железа гема с переходом его в 3-х валентную форму. В результате этого образуется метгемоглобин, который не способен присоединять ни О2, ни СО2. В результате окисления гемоглобин прочно удерживает кислород и теряет способность отдавать его тканям, что может привести к гибели организма.
К подобным сильным окислителем относятся нитраты и нитриты, содержащиеся, например, в химических удобрениях, также опасность представляют пероксиды, нитрокраски, анилиновые красители и ряд других веществ бытовой химии. В норме ежедневно около 0,5 % всего гемоглобина превращается в метгемоглобин, но затем она снова восстанавливается в гемоглобин специальным ферментом метгемоглобинредуктазой. Встречаются наследственные метгемоглобинемии, когда снижена активность метгемоглобинредуктазы в эритроцитах, что вызывает кислородное голодание. Метгемоглобин, также как карбоксигемоглобин, относится к группе патологических соединений гемоглобина.
Не нашли то, что искали? Воспользуйтесь поиском:
источник
Соединения гемоглобина, их функции
Гем — это комплексное соединение протопорфирина ІX с железом. Он крайне неустойчив и легко превращается либо в гематин с окислением двухвалентного железа до трехвалентного и присоединением к последнему ОН, либо в гемин, содержащий вместо ОН- ионизированнный хлор. Структура гема идентична для гемоглобина всех видов животных. Различия в свойствах гемоглобина обусловлены различиями белкового компонента. Как известно, молекула гемоглобина представляет собой тетрамер, состоящий из двух пар полипептидных цепей, каждая из которых соединена с гемом. Совокупность четырех попарно одинаковых полипептидных цепей образует белковую часть молекулы гемоглобина — глобин.
ГЕМОГЛОБИН, ЕГО СОСТАВ И ЗНАЧЕНИЕ
Гемоглобин (от греческого haema — кровь и латинского glomus — шарик) относится к числу важнейших дыхательных белков, осуществляющих транспорт кислорода от легких к тканям, а также косвенно участвующих в переносе углекислоты. Гемоглобин — основной компонент эритроцитов крови всех позвоночных и некоторых беспозвоночных животных. В каждом эритроците содержится около 280 млн. молекул гемоглобина. Гемоглобин — сложный протеин, относится к классу так называемых хромопротеидов (гемопротеинов), состоит из железосодержащих групп гема и белкового остатка глобина. На долю гема приходится 4%, и на белковую часть — 96%. Молекулярная масса гемоглобина составляет 64 500 Д.
Динамическое взаимодействие гема с глобином придает гемоглобину уникальные свойства, необходимые для обратимого процесса транспорта кислорода.
В крови взрослого человека содержится в основном НbА (95-98%), а
также НbА2 (2-2,5%), HbF (0,1-2%). На протяжении всей жизни соотношение
НbА и НbА2 в норме составляет 30:1. Молекула НbА включает две α- и две β-полипептидные цепи. В настоящее время полностью определена первичная структура глобиновых цепей молекулы НbА. α — и β -цепи отличаются как по числу, так и по составу аминокислот; α -цепи состоят из 141 аминокислотного остатка, β -цепи — из 146 аминокислотных остатков, связанных в генетически определенной последовательности. В целом в составе молекулы гемоглобина содержится 574 аминокислотных остатка.
Кроме нормальных типов гемоглобина, существуют аномальные гемоглобины, обусловленные различными генными мутациями на уровне структурных или регуляторных генов, управляющих синтезом полипептидных цепей. Аномальные гемоглобины отличаются своими физико-химическими свойствами, структурой глобиновой части молекулы. В настоящее время установлено более 200 аномальных гемоглобинов.
Внутри эритроцита имеются определенные особенности расположения гемоглобина. Ближе к мембране молекулы гемоглобина располагаются в строго перпендикулярном направлении, что облегчает взаимодействие гемоглобина с кислородом. В центре эритроцита обнаружено более хаотическое расположение его молекул. Гиалоплазма содержит многочисленные гранулы гемоглобина размером около 4-5 нм.
У мужчин содержание гемоглобина в среднем составляет 130-160 г/л, у женщин- 120-140 г/л.
Эритроциты, нормально насыщенные гемоглобином, получили название нормохромных, со сниженным количеством — гипохромных, а с повышенным содержанием гемоглобина — гиперхромных.
Важнейшими соединениями гемоглобина являются оксигемоглобин и восстановленный (редуцированный) гемоглобин. В составе этих соединений гемоглобина сохраняется двухвалентное железо, а следовательно, не изменяется способность гемоглобина к связи с О2.
При воздействии на гемоглобин окислителей (перекисей, супероксидного анион-радикала, нитритов, нитропроизводных органических веществ — хининов) происходит истинное окисление гемоглобина с отнятием электрона, превращением железа гемоглобина из двухвалентного в трехвалентное и соответствующими изменениями центральной части геминовой группы. В связи с этим образуется метгемоглобин, который не способен вступать в обратимую реакцию с О2 и обеспечивать его транспорт.
Из тканей различных органов, особенно кишечника, постоянно поступают в кровь вещества, вызывающие образование метгемоглобина в условиях нормы в очень небольших количествах. Это связано с наличием в эритроцитах антиоксидантов, в частности системы глютатиона, аскорбиновой кислоты, препятствующих образованию метгемоглобина или обеспечивающих его восстановление при участии фермента НАД-Н-метгсмоглобинредуктазы.
В условиях патологии при поступлении в кровь значительного количества метгемоглобинобразователей возникает недостаточность антиоксидантной системы эритроцитов, что приводит к чрезмерному образованию метгемоглобина и отравлению организма.
Если количество метгемоглобина в крови превышает 50% общего количества гемоглобина, то возникает тяжелая гемическая гипоксия, обусловленная недостаточностью транспорта О2 эритроцитами, и угроза летального исхода отравления. Метгемоглобин может быть быстро восстановлен в гемоглобин при помощи различных органических и неорганических восстановителей (аскорбиновой кислоты, глютатиона, гидросульфита и др.) лишь in vitro. Между тем in vivo эти средства непригодны либо из-за медленного проникновения их в эритроциты или вследствие их ядовитости.
Восстановление метгемоглобина в гемоглобин в эритроцитах происходит в процессе ферментативных реакций с участием дегидрогеназ и соответствующих субстратов — молочной кислоты, глюкозы, глюкозо-6-фосфата.
Карбоксигемоглобин— соединение гемоглобина с угарным газом — окисью углерода (СО). Закономерности насыщения гемоглобина окисью углерода такие же, что и для насыщения гемоглобина кислородом. Разница заключается в том, что сродство СО к гемоглобину в 300 раз выше, чем О2 к гемоглобину; распад карбоксигемоглобина происходит в 10 000 раз медленнее, чем оксигемоглобина.
Высокое сродство гемоглобина к СО обусловливает высокую ядовитость угарного газа. Примесь даже 0,1% СО в окружающем воздухе приводит к тому, что почти 80% гемоглобина оказывается связанным с угарным газом и выключается из функции переноса кислорода.
Миоглобин— вещество, близкое по структуре гемоглобину, находится в мышцах (миогемоглобин). В большом количестве он содержится в сердечной мышце, особенно в сердце животных, способных долго находиться под водой — тюленей, дельфинов, китов. Связывая О2, миоглобин создает некоторый его запас, своеобразное депо кислорода, который используется при снижении кислородной емкости крови, при развитии гипоксии различного происхождения. За счет миоглобина осуществляется также обеспечение кислородом работающих мышц. При сокращении мышц наблюдаются сдавление капилляров, нарушение кровотока с развитием гипоксического состояния в мышцах. Однако благодаря наличию кислорода, связанного с миоглобином, в течение некоторого времени мышечные волокна снабжаются кислородом. Касаясь структурных особенностей миоглобина, следует отметить, что структура простетической группы его такая же, как и у гемоглобина; между тем белковая часть обладает меньшей молекулярной массой (около 17 000 Д) и включает 153 аминокислотных остатка. Миоглобин обладает большим сродством к кислороду, присоединяет около 14% общего количества кислорода в организме. Сродство миоглобина к окиси углерода значительно меньше, чем у гемоглобина.
Главными функциями гемоглобина являются дыхательная и буферная. Выполнение указанных функций гемоглобином возможно лишь при сохранении целостности эритроцитов, так как при гемолизе эритроцитов и выходе гемоглобина в плазму крови он быстро выводится из организма за счет фагоцитоза клетками мононуклеарной фагоцитирующей системы, а также в силу быстрого удаления через почки.
Один моль гемоглобина может связать до 4 молей кислорода, а 1 г гемоглобина может связать 1,345 мл кислорода. Кислородная емкость крови — это максимальное количество кислорода, которое может быть связано 100 мл крови. Насыщение гемоглобина кислородом составляет 96-98%.
Связывание кислорода происходит в процессе так называемой оксигенации, а не истинного окисления. Железо в оксигемоглобине остается двухвалентным. Кислород, соединяясь с гемом первой α-цепи, вызывает конформационные перестройки в геме, что облегчает присоединение кислорода ко второй α-цепи. При этом возникает вновь разрыв двух солевых мостиков между α1 и α2— субъединицами с выделением протонов. Конформационные перестройки α -цепей в процессе оксигенации приводят к изменению положения валина в β -цепях и освобождению места для присоединения О2. Оксигенация β-цепей также сопровождается разрывом солевых мостиков между α-β и β-β -цепями с выделением протонов и переходом всей молекулы в оксиконформацию.
При выполнении дыхательной функции молекула гемоглобина изменяет свои размеры подобно дышащей грудной клетке. Это послужило основанием для того, чтобы назвать гемоглобин «дышащей молекулой, или молекулярными легкими».
Соотношение между количеством гемоглобина и оксигемоглобина определяется в значительной степени парциальным давлением кислорода в крови, хотя при этом и не соблюдается линейная зависимость. Это соотношение выражается в виде кривой диссоциации оксигемоглобина.
Участие гемоглобина в регуляции рН крови (буферная функция) связано с его ролью в транспорте кислорода и углекислого газа. Следует отметить наличие в организме гемоглобиновой и оксигемоглобиновой буферных систем.
Дата добавления: 2014-01-20 ; Просмотров: 3253 ; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
источник
ГЕМОГЛОБИН
ГЕМОГЛОБИН, Hb (haemoglobinum; греч. haima кровь + лат. globus шарик),— гемопротеид, сложный белок, относящийся к гемсодержащим хромопротеидам; осуществляет перенос кислорода от легких к тканям и участвует в переносе углекислого газа от тканей в органы дыхания. Гемоглобин содержится в эритроцитах всех позвоночных и некоторых беспозвоночных животных (черви, моллюски, членистоногие, иглокожие), а также в корневых клубеньках некоторых бобовых растений. Мол. вес (масса) Гемоглобина эритроцитов человека равен 64 458; в одном эритроците находится ок. 400 млн. молекул Гемоглобина. В воде Гемоглобин хорошо растворим, нерастворим в спирте, хлороформе, эфире, хорошо кристаллизуется (форма кристаллов Гемоглобина различных животных неодинакова).
В состав Гемоглобина входит простой белок— глобин и железосодержащая простетическая (небелковая) группа — гем (96 и 4% от массы молекулы соответственно). При pH ниже 2,0 происходит расщепление молекулы Гемоглобина на гем и глобин.
Содержание
Гем (C34H32O4N4) представляет собой железопротопорфирин— комплексное соединение протопорфирина IX с двухвалентным железом. Железо находится в центре протопорфиринового ядра и связано с четырьмя атомами азота пиррольных ядер (рис. 1): две связи координационные и две связи с замещением водорода.
Поскольку координационное число железа равно 6, две валентности остаются неиспользованными, одна из них реализуется при связывании гема с глобином, а ко второй присоединяется кислород или другие лиганды — CO, F + , азиды, вода (рис. 2) и т. д.
Комплекс протопорфина IX с Fe 3+ называют гематином. Солянокислая соль гематина (хлоргемин, гемин) легко выделяется в . кристаллическом виде (так наз. кристаллы Тейхманна). Гем обладает способностью образовывать комплексные соединения с азотистыми соединениями (аммиаком, пиридином, гидразином, аминами, аминокислотами, белками и т. д.), превращаясь при этом в гемохромогены (см.). Поскольку у всех видов животных гем одинаков, то различия в свойствах гемоглобинов обусловлены особенностями строения белковой части молекулы Г. — глобина.
Глобин
Глобин — белок типа альбуминов, содержит в своей молекуле четыре полипептидные цепи: две альфа-цепи (в каждую из которых входит по 141 аминокислотному остатку) и две бета-цепи, содержащие по 146 остатков аминокислот. Т. о., белковый компонент молекулы Г. построен из 574 остатков различных аминокислот. Первичная структура, т. е. генетически обусловленная последовательность расположения аминокислот в полипептидных цепях глобина человека и ряда животных, полностью изучена. Отличительной особенностью глобина человека является отсутствие в его составе аминокислот изо лейцина и цистина. N-концевыми остатками в альфа- и бета-цепях являются остатки валина. C-концевые остатки альфа-цепей представлены остатками аргинина, а бета-цепей — гистидина. Предпоследнее положение в каждой из цепей занимают остатки тирозина.
Рентгеноструктурный анализ кристаллов Г. позволил выявить основные особенности пространственной структуры его молекулы [Перутц (М. Perutz)]. Оказалось, что альфа- и бета-цепи содержат спиральные сегменты различной длины, которые построены по принципу альфа-спиралей (вторичная структура); альфа-цепь имеет 7, а бета-цепь — 8 спиральных сегментов, соединенных неспиральными участками. Спиральные сегменты, начиная с N-конца, обозначаются буквами латинского алфавита (А, В, С, D, E, F, G, Н), а неспиральные участки или углы поворота спиралей имеют соответствующее обозначение (АВ, ВС, CD, DE и т. д.). Неспиральные участки на аминном (N) или карбоксильном (С) конце цепи глобина обозначают соответственно NA или НС. Аминокислотные остатки нумеруются в каждом сегменте и, кроме того, в скобках дается нумерация данного остатка от N-конца цепи.
Спиральные и неспиральные участки определенным образом уложены в пространстве, что определяет третичную структуру цепей глобина. Последняя почти идентична у альфа- и бета-цепей Г., несмотря на значительные различия в их первичной структуре. Это обусловлено специфическим расположением полярных и гидрофобных групп аминокислот, приводящим к скоплению неполярных групп во внутренней части глобулы с образованием гидрофобного ядра. Полярные группы белка обращены к водной среде, находясь с ней в контакте. Внутри каждой цепи глобина недалеко от поверхности находится гидрофобная впадина («гемовый карман»), в к-рой располагается гем, ориентируясь так, что его неполярные заместители направлены во внутрь молекулы, входя в состав гидрофобного ядра. В результате возникает ок. 60 неполярных контактов между гемом и глобином и один-два полярных (ионных) контакта гема с альфа- и бета-цепями, в которых участвуют остатки пропионовой к-ты гема, выходящие наружу из гидрофобного «кармана». Расположение гема в гидрофобной впадине глобина обеспечивает возможность обратимого присоединения кислорода к Fe 2+ гема без окисления последнего до Fe 3+ и характерно для гемоглобинов различных видов животных. Подтверждением этого является крайняя чувствительность Г. к любым изменениям неполярных контактов вблизи гема. Так, замена гема в Г. на гематопорфирин приводит к резкому нарушению свойств Г.
Некоторые аминокислотные остатки, окружающие гем в гидрофобной впадине, относятся к числу инвариантных аминокислот, т. е. аминокислот, одинаковых для различных видов животных и существенных для функции Г. Среди инвариантных аминокислот большое значение отводится трем: остаткам гистидина, так наз. проксимальным гистидинам (87-я позиция в а- и 92-я позиция в P-цепях), дистальным гистидинам (58-я позиция в а- и 63-я позиция в (5-цепях), a также остатку валина Е-11 (62-я позиция в альфа-цепи и 67-я позиция в бета-цепи).
Связь между так наз. проксимальным гистидином и железом гема является единственной хим. связью между ними (реализуется пятая координационная связь атома Fe 2+ гема) и непосредственно влияет на присоединение кислорода к гему. «Дистальный» гистидин непосредственно не связан с гемом и участия в фиксировании кислорода не принимает. Его значение состоит в стабилизации атома Fe 2+ против необратимого окисления (по-видимому, за счет образования водородной связи между кислородом и азотом). Остаток валина (Е-11) является своего рода регулятором скорости присоединения кислорода к гемам: в бета-цепях он стерически расположен так, что занимает то место, куда должен присоединиться кислород, вследствие чего оксигенация начинается с фльфа-цепей.
Белковая часть и простетическая группа молекулы Г. оказывают друг на друга сильное влияние. Глобин изменяет многие свойства гема, придавая ему способность к связыванию кислорода. Гем обеспечивает устойчивость глобина к действию к-т, нагреванию, расщеплению ферментами и обусловливает особенности кристаллизационных свойств Г.
Полипептидные цепи с присоединенными к ним молекулами гема образуют четыре основные части — субъединицы молекулы Г. Характер соединения (укладки) их между собой ц расположение в пространстве определяют особенности четвертичной структуры Г.: а- и P-цепи располагаются по углам тетраэдра вокруг оси симметрии, причем альфа-цепи лежат поверх p-цепей и как бы втискиваются между ними, а все четыре гема далеко удалены друг от друга (рис. 3). В целом образуется тетрамерная сфероидная частица с размерами 6,4 X 5,5 х 5,0 нм. Четвертичная структура стабилизирована солевыми связями между α—α- и β-β-цепями и двумя видами контактов между α и β-цепями (α1-β1 и α2-β2). Контакты α1-β1 наиболее обширны, в них участвуют 34 аминокислотных остатка, большинство взаимодействий неполярно. Контакт α1-β2 включает 19 аминокислотных остатков, большинство связей также неполярно, за исключением нескольких водородных связей. Все остатки, находящиеся в этом контакте, одинаковы у всех изученных видов животных, в то время как 1/3 остатков в α1-β1-контактах варьирует.
Г. человека гетерогенен, что обусловлено различием полипептидных цепей, входящих в его состав. Так, Г. взрослого человека, составляющий 95—98% Г. крови (HbA), содержит две α- и две β-цепи; малая фракция Г. (HbA2), достигающая максимального содержания 2,0—2,5%, содержит две α- и две σ-цепи; гемоглобин плода (HbF), или фетальный гемоглобин, составляющий в крови взрослого человека 0,1—2% , состоит из двух α- и двух γ-цепей.
Фетальный Г. заменяется на HbA в первые месяцы после рождения. Он характеризуется значительной устойчивостью к тепловой денатурации, на чем основаны методы определения его содержания в крови.
В зависимости от состава полипептидных цепей перечисленные типы Г. обозначаются следующим образом: HbA — как Hbα2β2, HbA2 — как Hbα2σ2, a HbF — как Hbα2γ. При врожденных аномалиях и заболеваниях кроветворного аппарата появляются аномальные типы Г., напр, при серповидноклеточной анемии (см.), талассемии (см.), врожденной метгемоглобинемии неэнзиматического происхождения (см. Метгемоглобинемия) и др. Наиболее часто встречается замещение единственной аминокислоты в одной паре полипептидных цепей.
В зависимости от величины валентности атома железа гема и типа лиганда в молекуле Г. последний может находиться в нескольких формах. Восстановленный Г. (дезокси-Hb) имеет Fe 2+ со свободной шестой валентностью, при присоединении к нему O2 образуется оксигенированная форма Г. (HbO2). При действии на HbO2 ряда окислителей (феррицианид калия, нитриты, хиноны и др.) происходит окисление Fe 2+ до Fe 3+ с образованием метгемоглобин, неспособного к переносу O2. В зависимости от величины pH среды различают кислую и щелочную форму метгемоглобина, содержащих в качестве шестого лиганда H2O или OH-группу. В крови здоровых людей концентрация метгемоглобина составляет 0,83+0,42% .
Метгемоглобин обладает способностью прочно связывать фтористый водород, синильную к-ту и другие вещества. Этим его свойством пользуются в мед. практике для спасения людей, отравленных синильной к-той. Различные производные Г. различаются по спектрам поглощения (табл.).