сравнить строение гемоглобина и миоглобина

Гемоглобин и миоглобин.

Гемоглобин – состоит из белка глобина и небелковой части гема, в составе которого имеется атом Fе(II). Молекула Нb содержит 4 гема и является белком с четвертичной структурой (4 субъединицы – 2 α-цепи и 2 β-цепи, каждая из которых имеет свою третичную структуру и особым образом уложена вокруг кольца гема). Каждая из субъединиц похожа на молекулу миоглобина. Молекула гемоглобина способна присоединять 4 молекулы О2. Гемоглобин переносит кислород от легких к тканям, а углекислый газ в обратном направлении. Нb + О2 → НbО2оксигемоглобин – в капиллярах легких Нb насыщается кислородом при высоком парциальном давлении (100 мм рт. ст.).

В капиллярах тканей, где парциальное давление кислорода низкое (5 мм рт. ст.) НbО2 → на Нb и О2. Кислород переходит в ткани, а освободившийся Нb соединяется с поступившим из тканей СО2 и превращается в НbСО2карбгемоглобин, который переносится с кровью к легким. В легочных капиллярах НbСО2 → Нb + СО2. СО2 выводится из организма при выдыхании, а Нb вновь насыщается кислородом.

Сравнение зависимости насыщения от парциального давления кислорода показывает, что при парциальных давлениях кислорода, характерных для тканей, гемоглобин отдает значительные количества кислорода. В гемоглобине происходит перемещение атома железа в плоскость гема с одновременным изменением конформации полипептидной цепи, но так как молекула Нb имеет четвертичную структуру и отдельные цепи связаны между собой, то это позволяет передать изменения конформации на область связи между полипептидными цепями. Это изменяет положение в пространстве всей молекулы и облегчает доступ О2 к остальным гемам молекулы Нb. Одновременно это изменение конформации сопровождается появлением на поверхности групп, которые, диссоциируя, отдают протоны (Н + ) в окружающую среду. При понижении парциального давления кислорода события повторяются в обратном направлении: отдача кислорода идет по мере снижения парциального давления, гемоглобин переходит в другое конформационное состояние, при этом из окружающей среды (ткань), где высока концентрация протонов, протоны присоединяются к гемоглобину. Такие изменения конформации позволяют гемоглобину не только регулировать обеспечение кислородом тканей, но и участвовать в поддержании кислотно-основного равновесия в организме.

При отравлении угарным газом в крови образовывается карбоксигемоглобин Нb + СО → НbСО – прочное соединение, препятствует образованию НbО2 и транспорту кислорода. Возникает кислородное голодание.

Различные формы Нb определяются методом спектрального анализа. У взрослого человека молекула НbА (2 α-цепи и 2 β-цепи). Но от целого ряда условий состав цепей гемоглобина может меняться. У плода НbF (фетальный – 2 α-цепи, 2 γ-цепи) – он лучше связывает кислород при его относительной недостаточности в период внутриутробного развития.

В результате определенных нарушений генетического аппарата клетки Нb патологический, а заболевания – гемоглобинопатии наследственного происхождения.

Классическим примером является серповидно-клеточная анемия(аномальный гемоглобин – причина). Синтезируется β-цепь необычного состава, в которой валин занимает место глутаминовой кислоты, присутствующей в нормальном НbА. Изменение такое вызывает нарушение структуры и свойств Нb, который обозначается НbS – он легко выпадает в осадок, обладает сниженной способностью переносить кислород. В результате эритроциты, содержащие НbS приобретают форму серпа. Клинически: нарушается кровообращение и дыхание, иногда летальный исход.

Миоглобин – хромопротеид, содержащийся в мышцах. Он обладает простетической группой – гемом, циклическим тетрапирролом, придающим ему красный цвет. Тетрапиррол состоит из 4 пиррольных колец, соединенных в плоскую молекулу метиленовыми мостиками. Атом железа занимает центральное положение в этой плоской молекуле. Железо в составе гема цитохромов способно менять свою валентность, в гемоглобине и миоглобине изменение валентности железа нарушает их функцию. Главная функция и гемоглобина и миоглобина – связывание кислорода.

Миоглобин – сферическая молекула, состоит из 153 аминокислот с общей молекулярной массой 17000. он состоит из одной цепи, аналогичной субъединице Нb. На уровне вторичной структуры он образует 8 α-спиральных участков, захватывающих почти 75% всех аминокислот молекулы. Атом железа в геме миоглобина, не связанный с кислородом, выступает из плоскости молекулы на 0,03 нм. В оксигенированной форме атом железа как бы погружается в плоскость молекулы гема. Образуя связь с одной из молекул гистидина глобиновой части, железо при соединении с кислородом изменяет и конформацию белка. Миоглобин удобен для хранения кислорода, но не удобен для транспорта его по крови. Это объясняется процессом насыщения миоглобина в зависимости от парциального давления кислорода. Так как в легких парциальное давление кислорода 13,3 кПа, миоглобин хорошо бы насыщался кислородом, но в венозной крови это давление составляет 5,3 кПа, а в мышцах ещё меньше – 2,6 кПа. Миоглобин в таких условиях сможет отдавать мало кислорода и будет недостаточно эффективен в транспорте кислорода от легких к тканям.

Гемпростетическая группа многих важных с точки зрения функций белков.

Гем – небелковая часть, в составе находится Fе (ΙΙ), гем входит в состав флавопротеинов, гемопротеидов, гемоглобина, миоглобина, каталазы, пероксидазы, цитохромов.

Знание вопросов биосинтеза и распада гема призвано помочь в понимании роли гемопротеинов в организме. Нарушение этих процессов связано с развитием заболеваний. Так, с нарушением биосинтеза гема связана группа заболеваний – порфирии.

Порфирии – группа заболеваний с нарушением биосинтеза гемма. группа заболеваний с нарушением биосинтеза гемма. Наблюдается накопление побочных промежуточных продуктов, которые откладываются в различных органах или выделяются в повышенных количествах с калом или мочой. Появление в моче в значительных количествах веществ незавершенного синтеза гемма либо продуктов его распада (копропорфирин и уропорфирин) вызывает порфиринурию. Моча пурпурно-красного цвета. Это бывает при некоторых поражениях печени, кишечных кровотечениях, интоксикациях. Порфиринурия является одним из признаков отравления свинцом, когда нарушается транспорт Fe, необходимого для синтеза гемоглобина.

Гораздо чаще встречаются патологические состояния, связанные с распадом гема и нарушением выведения из организма продуктов его катаболического превращения. Наиболее распространенной является желтуха.

Схема синтеза гема глицин + сукцинил – КоА синтаза 5-аминолевулиновой кислоты 5 – аминолевулиновая кислота Уропорфириноген ΙΙΙ В цитоплазме клеток Копропорфириноген ΙΙΙ

В митохондриях + Fe 2+

Из многих представителей хромопротеидов для человека наибольшее значение имеет гемоглобин. Хромопротеиды растительного и животного происхождения, находящиеся в пищевых продуктах, подвергаются действию ферментов пищеварительного тракта.

Гемоглобин пищи, находящийся в ней в денатурированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Белок расщепляется пепсином и трипсином с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в ЖКТ, которые свойственны простым белкам. Простетическая группа – гемм – окисляется в гематин. Гематин всасывается в кишечнике очень плохо. Эти пигменты выделяются с калом частью в неизмененном виде, частью в виде различных продуктов, образующихся под влиянием бактерий кишечника. Обычные химические способы обнаружения крови в кале, имеющие большое значение для клиники, основаны на реакциях гематина, и могут дать достоверные результаты только в том случае, если диета не содержит мяса, в котором присутствует миоглобин.

Время жизни эритроцитов у взрослого организма составляет около 4 месяцев. Спустя этот период времени эритроциты разрушаются в основном в печени, селезенке и костном мозге. В ходе разрушения из эритроцитов высвобождается гемоглобин (8 – 9 г в сутки).

Дата добавления: 2018-03-01 ; просмотров: 4632 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Модель миоглобина и гемоглобина

Миоглобин находится в саркоплазме в непосредственной близости к митохондриям и выполняет роль переносчика кис­лорода от гемоглобина к дыхательным ферментам, и резер­вуара для кислорода. Известно, что миоглобин облада­ет большим, чем гемоглобин сродством к кислороду и поэто­му его много в мышцах ныряющих и диких животных, У человека из общего запаса кислорода (2450 мл) в виде оксимиоглобина запасено 14%. Тренировка мышц приводит к увеличению содержания миоглобина и улучшению их кис­лородного обеспечения.

Миоглобин является специфичным белком мышц и поэтому его появление в сыворотке крови указывает на повреждение мышечной ткани. Его определение в сыворотке крови является од­ним из самых ранних и точных методов выявления инфаркта миокарда, т. к. миоглобин при этом заболевании появляется в больших количествах в крови уже в первые два часа раз­вития инфаркта.

Гемоглобин.Молекула Нb состоит из простого белка типа гистонов — глобина и четырех гемов. Глобин состоит из 4-х мономеров, двух α -цепей (по 141 остатку аминокислот в каждой из α-цепей и двух β-цепей (по 146 остатков аминокислот в каждой). Пространственные структуры миоглобина и гемоглобина поразительно сходны, хотя первичная структура α и β-цепей гемоглобина и цепь миоглобина имеет много различий. Молекулярная масса гемоглобина 70000 Д.

Видовая специфичность гемоглобинов обусловлена амино­кислотным составом глобина. Так, глобин взрослого человека, не содержит изолейцина, а в глобине животных он присутствует. Гемы гемоглобинов всех животных имеют одинаковое строение. Составные части гемоглобина взаимно влияют друг на друга. Глобин превращает малорастворимый, химически инерт­ный гем в высоко растворимый и активный, способный свя­зывать кислород. Гемы же придают глобину устойчивость.

Порфин с заместителями у β-углеродов получил название порфирина. Отдельные порфирины отличаются друг от друга характером заместителей. Гем имеет следующие заместители: у С1, С3, С5, С8 — метильные группы, у С2, С4 — винильные радикалы, у С6, С7 — остатки пропионовой кислоты. Порфирин с перечисленными заместителями получил название протопорфирина, который соединяясь с двухвалентным ио­ном железа (Fе 2+ ), образует гем. Железо присоединяется к атомам азота I и 3 колец нековалентными (координаци­онными) связями, к атомам азота II и IV колец ковалентными связями Гем соединяется с полипептидной цепью двумя координа­ционными связями иона железа, а полипептидная цепь за счет атомов азота имидазольных колец проксимальных гистидинов. Одна из этих связей существует посто­янно, другая разрывается в момент присоединения к гемогло­бину молекулы кислорода.

7. Дыхательные ферменты, понятие о строении, представители, значение.

Дыхательные ферменты бывают флавопротеиды, содержащие витамин В2, и гемсодержащие — цитохромы, каталазы, пероксидазы. Они участвуют в окислительно-восстановительных реакциях, необходимы для обеспечения энергией различных процессы.

8.Фосфопротеиды, общая характеристика, свойства, представители.

Фосфопротеиды — это сложные белки, состоящие из простого белка и простетической группы — фосфорной кислоты. Фосфорные кислоты сложноэфирной связью присоединяются к оксиаминокислотам, таким как серин, треонин, тирозин, образуя моно-, ди- и трифосфорные эфиры. Фосфопротеиды, в основном, полноценные белки, кислые. Имеют большое значение как источники незаменимых аминокислот и фосфорной кислоты. Поэтому фосфопротеиды необходимы для роста (для построения скелета, белков нового организма), они используются для синтеза фосфолипидов, а последние, в свою очередь, необходимы для построения клеточных и субклеточных мембран. Фосфопротеиды являются источниками фосфорной кислоты для реакций фосфорилирования и дефосфорилирования, а эти реакции лежат в основе активирования или ингибирования ферментов. Служат источником фосфорной кислоты для построения АМФ и других нуклеозидмонофосфатов, из которых образуются ди- и трифосфорные производные — источники энергии. Фосфопротеиды используются для синтеза нуклеиновых кислот.

Представители: казеиноген (содержат примерно 1% фосфора) молока, фосвитин и вителлин желтка яиц, ихтуллин икры рыб. В остальных представителях фосфопротеидов содержание фосфора достигает 10%. Все эти белки не свертываются при кипячении, не растворимы в воде, полноценные.

9.Металлопротеиды, строение, представители, значение.

Металлопротеиды — сложные белки, в составе которых имеются металлы, которые присоединяются непосредственно к аминокислотам, что и отличает их от хромопротеидов, в которых металл включен в органическое вещество, в частности, в гем. Связь между аминокислотой и металлом бывает прочная и рыхлая в зависимости от роли, которую выполняют эти белки. Различают железосодержащие, медьсодержащие, цинксодержащие и другие металлопротеиды. Они в основном выполняют транспортную и депонирующую роль. Входят в состав некоторых ферментов, витаминов.

Представители: к железосодержащим белкам относят трансферрин, ферритин, гемосидерин. Трансферрин содержит 0,13% 3 + -валентного железа, выполняет транспортную роль. В составе ферритина 20% железа, это депонируемая форма железа, сохраняется в печени и селезенке. Гемосидерин кроме железа содержит в своей молекуле нуклеотиды, углеводы. Роль неизвестна. Депонируется в клетках соединительной ткани.

Медьсодержащие ферменты — это церулоплазмин, который образуется в печени и служит как транспортная и депонируемая форма. Кроме того, этот белок является ферментом ферроксидазой. Есть Сu-фермент, который участвует в процессах кератинизации.

Цинксодержащие белки – это карбангидраза, участвующая в переносе СО2; карбоксипептидаза. Последний относится к гидролазам, участвует в переваривании полипептидов.

10. Липопротеиды — структурные, транспортные, строение

Липопротеиды – это липид-белковые комплексы, в составе содержатся различные виды липидов. По функции делятся на структурные, которые находятся в мембранах и сывороточные (транспортные). Транспортные ЛП делятся на три вида: липопротеиды очень низкой плотности (ЛПОНП), липопротеиды низкой плотности (ЛПНП) и липопротеиды высокой плотности (ЛПВП). Образуются они в печени и, как видно из названия, переносят нерастворимые липиды.

Упражнения и ситуационнве задачи для самоконтроля

1. Написать фрагмент молекулы:

б) хондроитин серной кислоты;

в) гепарина, его применение в медицине.

2. Написать гем: а) гемоглобина; б)миоглобина

3.В чем сходство и отличие в строении НЬ и Mgb?

4.У больного склонность к тромбообразованию. Какой представитель гликозамингликанов можно использовать для лечения и профилактики тромбозов?

Занятие: «НУКЛЕОПРОТЕИДЫ. НУКЛЕИНОВЫЕ КИСЛОТЫ, ДНК, РНК, ВИДЫ, СТРОЕНИЕ, СТРУКТУРЫ, ЗНАЧЕНИЕ».

Вопросы и ответы для самоподготовки:

1. Нуклеопротеиды, общий план строения, роль.

Нуклеопротеиды — белки, обладающие слабокислыми свойствами, обусловленными большим содержанием в моле­кулах остатков фосфорной кислоты. Нуклеопротеиды раство­римы в воде и растворах щелочей. Молекулярная масса нуклеопротеидов достигает миллионов или даже миллиардов дальтон. Молекула нуклеопротеидов состоит

из простых бел­ков и простетической группы, называемой нуклеиновой кисло­той. Нуклеопротеиды играют в живых организмах важную роль: они принимают непосредственное участие в синтезе всех белков клеток и тканей, обуславливают специфичность их строения и свойств, передают наследственные свойства при размножении организмов и делении клеток.

В зависимости от того, какая нуклеиновая кислота входит в состав нуклеопротеида, различают дезоксирибонуклеопротеид (ДНП) и рибонуклеопротеид (РНП).

Белковый компонент нуклеопротеидов неоднороден и состоит из большого числа молекул простого белка типа кислых альбуминов и глобулинов у всех живых организмов и белков типа гистонов у высших животных или протаминов у рыб и морских животных. Гистоны имеют важное значение в защите ДНК, в поддержании структуры хромосом, в регуляции экспрессии генов (в частности, они являются фактором репрессии транскрипции ДНК). Негистоновые белки, входящие в состав, как правило, обладают свойствами ферментов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10907 — | 8162 — или читать все.

источник

Разница между гемоглобином и миоглобином

Основное отличие — гемоглобин против миоглобина

Гемоглобин и миоглобин являются двумя типами глобиновых белков, которые служат в качестве связывающих кислород белков. Оба белка способны увеличивать количество растворенного кислорода в биологических жидкостях позвоночных, а также у некоторых беспозвоночных. Органические простетические группы со сходными характеристиками участвуют в связывании кислорода в обоих белках. Но трехмерная ориентация в пространстве или стереоизомерия гемоглобина и миоглобина различны. Из-за этой разницы количество кислорода, которое может связываться с каждой из молекул белка, также различно. Гемоглобин способен плотно связываться с кислородом в то время как миоглобин неспособен к прочному связыванию с кислородом. Это различие между гемоглобином и миоглобином приводит к их различным функциям; гемоглобин находится в кровотоке, транспортируя кислород от легких к остальной части тела в то время как миоглобин находится в мышцах, выделяя необходимый кислород.

Ключевые области покрыты

1. Что такое гемоглобин
— определение, структура и состав, функция
2. Что такое миоглобин
— определение, структура и состав, функция
3. Сходство между гемоглобином и миоглобином
— очертить сходство
4. В чем разница между гемоглобином и миоглобином
— Сравнение основных различий

Ключевые термины: гемоглобин, миоглобин, кислород, гем, белки, глобиновый белок, кровь

Что такое гемоглобин

Гемоглобин — это многочастичный глобулярный белок с четвертичной структурой. Он состоит из двух α и двух β субъединиц, расположенных в тетраэдрической структуре. Гемоглобин является железосодержащим металлопротеином. Каждая из четырех глобулярных белковых субъединиц связана с небелковой протезной гемовой группой, которая связывается с одной молекулой кислорода. Производство гемоглобина происходит в костном мозге. Глобиновые белки синтезируются рибозомами в цитозоле. Гемовая часть синтезируется в митохондриях. Заряженный атом железа удерживается в порфириновом кольце путем ковалентного связывания железа с четырьмя атомами азота в одной плоскости. Эти атомы N принадлежат имидазольному кольцу остатка гистидина F8 каждой из четырех субъединиц глобина. В гемоглобине железо существует как Fe 2+ , придавая красный цвет эритроцитам.

У людей есть три типа гемоглобина: гемоглобин А, гемоглобин А2 и гемоглобин Ф. Гемоглобин А это распространенный тип гемоглобина, который кодируется HBA1, HBA2, а также ГБД Гены. Четыре субъединицы гемоглобина А состоят из двух α и двух субъединиц β (α2β2). Гемоглобин А2 и гемоглобин F редки и состоят из двух α и двух субъединиц δ и двух α и двух субъединиц γ соответственно. У младенцев тип гемоглобина Hb F (α2γ2).

Поскольку молекула гемоглобина состоит из четырех субъединиц, она может связываться с четырьмя молекулами кислорода. Таким образом, гемоглобин обнаружен в эритроцитах, как переносчик кислорода в крови. Из-за присутствия в структуре четырех субъединиц связывание кислорода увеличивается, когда первая молекула кислорода связывается с первой гем-группой. Этот процесс определяется как кооперативное связывание кислорода. Гемоглобин составляет 96% сухого веса эритроцитов. Некоторая часть углекислого газа также связана с гемоглобином для транспортировки из тканей в легкие. 80% углекислого газа транспортируется через плазму. Структура гемоглобина показана на Рисунок 1.

Рисунок 1: Структура гемоглобина

Функция гемоглобина

Что такое миоглобин

Миоглобин является кислородсвязывающим белком в мышечных клетках позвоночных, придающим мышцам отчетливый красный или темно-серый цвет. Это исключительно выражено в скелетных мышцах и сердечных мышцах. Миоглобин составляет 5-10% цитоплазматических белков в мышечных клетках. Поскольку аминокислотные изменения в полинуклеотидных цепях гемоглобина и миоглобина являются консервативными, как гемоглобин, так и миоглобин имеют сходную структуру. Кроме того, миоглобин представляет собой мономер, состоящий из одной полинуклеотидной цепи, состоящей из одной гем-группы. Следовательно, он способен связываться с одной молекулой кислорода. Таким образом, в миоглобине не происходит кооперативного связывания кислорода. Но аффинность связывания миоглобина является высокой по сравнению с таковой гемоглобина. В результате миоглобин служит белком, запасающим кислород в мышцах. Миоглобин выделяет кислород, когда мышцы функционируют. 3-D структура гемоглобина показана на фигура 2.

Рисунок 2: Миоглобин

Сходства между гемоглобином и миоглобином

  • И гемоглобин, и миоглобин являются связывающими кислород глобулярными белками.
  • Оба они содержат кислородсвязывающий гем в качестве протезной группы.
  • И гемоглобин, и миоглобин дают красный цвет крови и мышцам соответственно.

Разница между гемоглобином и миоглобином

Определение

Гемоглобин: Гемоглобин — это красный белок, который отвечает за транспортировку кислорода в крови позвоночных.

Миоглобин: Миоглобин — это красный белок с гемом, который переносит и запасает кислород в мышечных клетках.

Молекулярный вес

Гемоглобин: Молекулярная масса гемоглобина составляет 64 кДа.

Миоглобин: Молекулярная масса гемоглобина составляет 16,7 кДа.

Состав

Гемоглобин: Гемоглобин состоит из четырех полипептидных цепей.

Миоглобин: Миоглобин состоит из одной полипептидной цепи.

Четвертичная структура

Гемоглобин: Гемоглобин представляет собой тетрамер, состоящий из двух α и двух β субъединиц.

Миоглобин: Миоглобин является мономером. Следовательно, ему не хватает четвертичной структуры.

Количество молекул кислорода

Гемоглобин: Гемоглобин связывается с четырьмя молекулами кислорода.

Миоглобин: Миоглобин связывается только с одной молекулой кислорода.

Кооперативное связывание

Гемоглобин: Поскольку гемоглобин является тетрамером, он проявляет кооперативное связывание с кислородом.

Миоглобин: Поскольку миоглобин является мономером, он не проявляет кооперативного связывания.

Сродство к кислороду

Гемоглобин: Гемоглобин обладает низким сродством к связыванию с кислородом.

Миоглобин: Миоглобин обладает высоким сродством связываться с кислородом, что не зависит от концентрации кислорода.

Связь с кислородом

Гемоглобин: Гемоглобин способен плотно связываться с кислородом.

Миоглобин: Миоглобин не способен тесно связываться с кислородом.

Вхождение

Гемоглобин: Гемоглобин находится в кровотоке.

Миоглобин: Миоглобин находится внутри мышц.

Гемоглобин: Гемоглобин А, гемоглобин А2 и гемоглобин F являются типами гемоглобина у людей.

Миоглобин: Единственный тип миоглобина обнаружен во всех клетках.

функция

Гемоглобин: Гемоглобин берет кислород из легких и транспортирует к остальной части тела.

Миоглобин: Миоглобин накапливает кислород в мышечных клетках и выделяет при необходимости.

Заключение

Гемоглобин и миоглобин являются двумя связывающими кислород глобулярными белками у позвоночных. Гемоглобин представляет собой тетрамер, который совместно связывается с четырьмя молекулами кислорода. Миоглобин — это мономер, состоящий из одной группы гемов. Поскольку связывающая способность гемоглобина выше, чем у миоглобина, гемоглобин используется в качестве транспортирующего кислород белка в крови. Миоглобин используется в качестве запасающего кислород белка в мышечных клетках. Сродство связывания кислорода с миоглобином выше, чем у гемоглобина. Основное различие гемоглобина и миоглобина заключается в их функции. Функциональное различие гемоглобина и миоглобина возникает из-за разницы их трехмерной структуры.

Ссылка:

1. «Миоглобин». Гемоглобин и миоглобин. Н.п., н.д. Web.

источник